Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Nutrients ; 16(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542751

RESUMO

This study aimed to provide an updated critical review of the nutritional, therapeutic, biotechnological, and environmental aspects involved in the exploitation of Chenopodium quinoa Willd and its biowastes. Special attention was devoted to investigations of the therapeutic and nutritional properties of different parts and varieties of quinoa as well as of the use of the biowaste resulting from the processing of grain. Studies published from 2018 onward were prioritized. Extracts and fractions obtained from several Chenopodium quinoa matrices showed antioxidant, antidiabetic, immunoregulatory, neuroprotective, and antimicrobial effects in in vitro and in vivo models and some clinical studies. The activities were attributed to the presence of phytochemicals such as polyphenols, saponins, peptides, polysaccharides, and dietary fibers. Quinoa wastes are abundant and low-cost sources of bioactive molecules for the development of new drugs, natural antioxidants, preservatives, dyes, emulsifiers, and carriers for food and cosmetics applications. Among the demands to be fulfilled in the coming years are the following: (1) isolation of new bioactive phytochemicals from quinoa varieties that are still underexploited; (2) optimization of green approaches to the sustainable recovery of compounds of industrial interest from quinoa by-products; and (3) well-conducted clinical trials to attest safety and efficacy of extracts and compounds.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/química , Antioxidantes/farmacologia , Antioxidantes/química , Polifenóis , Fibras na Dieta/análise , Polissacarídeos
2.
Environ Toxicol Pharmacol ; 107: 104397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401815

RESUMO

The actions of arsenite and arsenate on carbohydrate metabolism in the once-through perfused rat liver were investigated. The compound inhibited lactate gluconeogenesis with an IC50 of 25 µM. It also increased glycolysis and fructolysis at concentrations between 10 and 100 µM. This effect was paralleled by strong inhibition of pyruvate carboxylation (IC50 = 4.25 µM) and by a relatively moderate diminution in the ATP levels. The inhibitory action of arsenate on pyruvate carboxylation and lactate gluconeogenesis was 103 times less effective than that of arsenite. For realistic doses and concentrations («1 mM), impairment of metabolism by arsenate can be expected to occur solely after its reduction to arsenite. Arsenite, on the other hand, can be regarded as a strong short-term modifier of lactate gluconeogenesis and other pathways. The main cause of the former is inhibition of pyruvate carboxylation, a hitherto unknown effect of arsenic compounds.


Assuntos
Arseniatos , Arsenitos , Compostos de Sódio , Ratos , Animais , Arseniatos/toxicidade , Arsenitos/toxicidade , Ácido Láctico/metabolismo , Ácido Pirúvico/farmacologia , Fígado , Metabolismo dos Carboidratos
3.
Food Res Int ; 178: 113878, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309896

RESUMO

Coffee processing generates large amounts of residues of which a portion still has bioactive properties due to their richness in phenolic compounds. This study aimed to obtain a coffee husks extract (CHE) and to encapsulate it (ECHE) with polyvinylpyrrolidone using a one-step procedure of solid dispersion. The extraction and encapsulation yields were 9.1% and 92%, respectively. Thermal analyses revealed that the encapsulation increased the thermal stability of CHE and dynamic light scattering analyses showed a bimodal distribution of size with 81% of the ECHE particles measuring approximately 711 nm. Trigonelline and caffeine were the main alkaloids and quercetin the main phenolic compound in CHE, and the encapsulation tripled quercetin extraction. The total phenolics content and the antioxidant activity of ECHE, assayed with three different procedures, were higher than those of CHE. The antioxidant activity and the bioaccessibility of the phenolic compounds of ECHE were also higher than those of CHE following simulated gastrointestinal digestion (SGID). Both CHE and ECHE were not toxic against Alliumcepa cells and showed similar capacities for inhibiting the pancreatic α-amylase in vitro. After SGID, however, ECHE became a 1.9-times stronger inhibitor of the α-amylase activity in vitro (IC50 = 8.5 mg/mL) when compared to CHE. Kinetic analysis revealed a non-competitive mechanism of inhibition and in silico docking simulation suggests that quercetin could be contributing significantly to the inhibitory action of both ECHE and CHE. In addition, ECHE (400 mg/kg) was able to delay by 50% the increases of blood glucose in vivo after oral administration of starch to rats. This finding shows that ECHE may be a candidate ingredient in dietary supplements used as an adjuvant for the treatment of diabetes.


Assuntos
Antioxidantes , Coffea , Ratos , Animais , Antioxidantes/análise , Quercetina , Povidona , Coffea/química , Cinética
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 173-187, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37395795

RESUMO

The aim of this work was to compare the anti-inflammatory and antioxidant effects of three natural coumarins: 1,2-benzopyrone, umbelliferone and esculetin. The antioxidant capacity of coumarins was evaluated using both chemical and biological in vitro assays. Chemical assays included DPPH and ABTS∙+ radical scavenging as well as ferric ion reducing ability power (FRAP) assay. Inhibition of mitochondrial ROS generation and lipid peroxidation in brain homogenates were used as biological in vitro assays. The experimental method of carrageenan-induced pleurisy in rats was used for the in vivo investigation of the anti-inflammatory activity. In silico molecular docking analysis was undertaken to predict the affinity of COX-2 to the coumarins. Considering the antioxidant capacity, esculetin was the most efficient one as revealed by all employed assays. Particularly, the mitochondrial ROS generation was totally abolished by the compound at low concentrations (IC50 = 0.57 µM). As for the anti-inflammatory effects, the COX-2 enzyme presented good affinities to the three coumarins, as revealed by the molecular docking analyses. However, considering the in vivo anti-inflammatory effects, 1,2-benzopyrone was the most efficient one in counteracting pleural inflammation and it potentiated the anti-inflammatory actions of dexamethasone. Umbelliferone and esculetin treatments failed to reduce the volume of pleural exudate. Overall, therefore, our results support the notion that this class of plant secondary metabolites displays promising effects in the prevention and/or treatment of inflammation and other diseases associated with oxidative stress, although the singularities regarding the type of the inflammatory process and pharmacokinetics must be taken into account.


Assuntos
Antioxidantes , Cumarínicos , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Espécies Reativas de Oxigênio , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Umbeliferonas/farmacologia , Umbeliferonas/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Extratos Vegetais/farmacologia
5.
Can J Physiol Pharmacol ; 102(1): 42-54, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37523769

RESUMO

The beneficial effects of high-fat low-carbohydrate (HFLC) diets on glucose metabolism have been questioned and their effects on liver metabolism are not totally clear. The aim of this work was to investigate the effects of an HFLC diet under different energy conditions on glucose homeostasis, fatty liver development, and hepatic gluconeogenesis using the isolated perfused rat liver. HFLC diet (79% fat, 19% protein, and 2% carbohydrates in Kcal%) was administered to rats for 4 weeks under three conditions: ad libitum (hypercaloric), isocaloric, and hypocaloric (energy reduction of 20%). Fasting blood glucose levels and total fat in the liver were higher in all HFLC diet rats. Oral glucose tolerance was impaired in isocaloric and hypercaloric groups, although insulin sensitivity was not altered. HFLC diet also caused marked liver metabolic alterations: higher gluconeogenesis rate from lactate and a reduced capacity to metabolize alanine, the latter effect being more intense in the hypocaloric condition. Thus, even when HFLC diets are used for weight loss, our data imply that they can potentially cause harmful consequences for the liver.


Assuntos
Gorduras na Dieta , Fígado Gorduroso , Ratos , Animais , Gluconeogênese , Carboidratos da Dieta/efeitos adversos , Dieta com Restrição de Carboidratos , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Glicemia/metabolismo , Homeostase , Glucose/metabolismo
6.
Plants (Basel) ; 12(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005771

RESUMO

Pereskia aculeata Miller and Pereskia grandfolia Haw, known as 'ora-pro-nobis', are unconventional vegetables belonging to the Cactaceae family, native to the Americas and common in the northeast and southeast regions of Brazil. This review attempts to present a balanced account of both the methods used for obtaining extracts from the diverse parts of the plants and the results that were obtained in terms of their applicability to foods and other products with biological activities. Attention will also be devoted to the properties of their bioactives and their applications to real food products. Methods for obtaining extracts from the diverse parts of the plants will be analyzed, as well as the chemical nature of the bioactives that were hitherto identified. Next, the applicability of ora-pro-nobis in either its integral form or in the form of extracts or other products (mucilages) to the production of food and dietary supplements will be analyzed. The species have been extensively investigated during the last few decades. But, the determination of chemical structures is frequently incomplete and there is a need for new studies on texture determination and color evaluation. Further studies exploring the fruit and flowers of P. aculeata are also required.

7.
Environ Toxicol Pharmacol ; 102: 104217, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442400

RESUMO

Chlorhexidine (CHX) is an over-the-counter antiseptic amply used by the population. There are reports that CHX acts in mitochondria as an uncoupler and inhibitor. The purpose of this study was to investigate the short-term effects of CHX on hepatic metabolic pathways linked to energy metabolism in the perfused rat liver. The compound inhibited both glucose synthesis and the urea cycle. Oxygen consumption was raised at low concentrations (up to 10 µM) and diminished at higher ones. A pronounced diminution in the cellular ATP content was observed. Conversely, CHX stimulated glycolysis and enhanced leakage of cellular enzymes (lactate dehydrogenase and fumarase). In isolated mitochondria, this antiseptic inhibited pyruvate carboxylation, oxidases, and oxygen uptake at very low concentrations (2 µM) and promoted uncoupling. The results described herein raise great concerns about the safety of CHX, as the observed effects can induce hypoglycemia, lactic acidosis, ammonemia as well as cell membrane disruption.


Assuntos
Anti-Infecciosos Locais , Clorexidina , Ratos , Animais , Clorexidina/toxicidade , Clorexidina/metabolismo , Ratos Wistar , Metabolismo Energético , Fígado , Ácido Pirúvico/farmacologia , Mitocôndrias Hepáticas
8.
Int J Hepatol ; 2023: 1283716, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056327

RESUMO

The alkaloid boldine occurs in the Chilean boldo tree (Peumus boldus). It acts as a free radical scavenger and controls glycemia in diabetic rats. Various mechanisms have been proposed for this effect, including inhibited glucose absorption, stimulated insulin secretion, and increased expression of genes involved in glycemic control. Direct effects on glucose synthesis and degradation were not yet measured. To fill this gap, the present study is aimed at ensuring several metabolic pathways linked to glucose metabolism (e.g., gluconeogenesis) in the isolated perfused rat liver. In order to address mechanistic issues, energy transduction in isolated mitochondria and activities of gluconeogenic key enzymes in tissue preparations were also measured. Boldine diminished mitochondrial ROS generation, with no effect on energy transduction in isolated mitochondria. It inhibited, however, at least three enzymes of the gluconeogenic pathway, namely, phosphoenolpyruvate carboxykinase, fructose-bisphosphatase-1, and glucose 6-phosphatase, starting at concentrations below 50 µM. Consistently, in the perfused liver, boldine decreased lactate-, alanine-, and fructose-driven gluconeogenesis with IC50 values of 71.9, 85.2, and 83.6 µM, respectively. Conversely, the compound also increased glycolysis from glycogen-derived glucosyl units. The hepatic ATP content was not affected by boldine. It is proposed that the direct inhibition of hepatic gluconeogenesis by boldine, combined with the increase of glycolysis, could be an important event behind the diminished hyperglycemia observed in boldine-treated diabetic rats.

9.
Naunyn Schmiedebergs Arch Pharmacol ; 396(3): 469-484, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36385686

RESUMO

The present study prepared, optimized, and characterized solid lipid microparticles that contained trans-anethole (SLMAN), evaluated their antiinflammatory activity in acute and chronic inflammation models, and investigated their effects on the gastric mucosa in arthritic rats. The microparticles were obtained by a hot homogenization process and characterized by physicochemical analyses. The acute inflammatory response was induced by an intradermal injection of 0.1 ml of carrageenan solution (200 µg) in the hind paw. The rats were treated orally with a single dose of SLMAN 1 h before induction of the inflammatory response. The chronic inflammatory response was induced by the subcutaneous application of 0.1 ml of complete Freund's adjuvant suspension (500 µg) in the hind paw. SLMAN was orally administered, starting on the day of arthritis induction, and continued for 21 days. The results showed that SLMAN was obtained with good encapsulation efficiency. Treatment with SLMAN at doses of 25 and 50 mg/kg was as effective as trans-anethole (AN) at a dose of 250 mg/kg on acute and chronic inflammatory responses. Histological analyses showed that treatment with SLMAN did not aggravate lesions in the gastric mucosa in arthritic rats. These results indicated that treatment with SLMAN at a dose that was 5-10 times lower than non-encapsulated AN exerted an inhibitory effect on acute and chronic inflammatory responses, suggesting the better bioavailability and efficacy of microencapsulated AN without aggravating lesions in the gastric mucosa in arthritic rats.


Assuntos
Artrite Experimental , Ratos , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipídeos
10.
Plants (Basel) ; 11(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36559593

RESUMO

Conventional treatments for liver diseases are often burdened by side effects caused by chemicals. For minimizing this problem, the search for medicines based on natural products has increased. The objective of this review was to collect data on the potential hepatoprotective activity of plants of the Brazilian native flora. Special attention was given to the modes of extraction, activity indicators, and identification of the active compounds. The databases were Science direct, Pubmed, and Google Academic. Inclusion criteria were: (a) plants native to Brazil; (b) studies carried out during the last 15 years; (c) high-quality research. A fair number of communications met these criteria. Various parts of plants can be used, e.g., fruit peels, seeds, stem barks, and leaves. An outstanding characteristic of the active extracts is that they were mostly obtained from plant parts with low commercial potential, i.e., by-products or bio-residues. The hepatoprotective activities are exerted by constituents such as flavonoids, phenolic acids, vitamin C, phytosterols, and fructose poly- and oligosaccharides. Several Brazilian plants present excellent perspectives for the obtainment of hepatoprotective formulations. Very important is the economical perspective for the rural producers which may eventually increase their revenue by selling increasingly valued raw materials which otherwise would be wasted.

11.
Life Sci ; 310: 120991, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162485

RESUMO

AIMS: to investigate the effects of resveratrol on glycogen catabolism and gluconeogenesis in perfused livers of healthy and arthritic rats. The actions of resveratrol-3-O-glucuronide (R3G) and the biotransformation of resveratrol into R3G was further evaluated in the livers. MAIN METHODS: arthritis was induced with Freund's adjuvant. Resveratrol at concentrations of 10, 25, 50, 100 and 200 µM and 200 µM R3G were introduced in perfused livers. Resveratrol and metabolites were measured in the outflowing perfusate. Respiration of isolated mitochondria and activity of gluconeogenic enzymes were also evaluated in the livers. KEY FINDINGS: resveratrol inhibited glycogen catabolism when infused at concentrations above 50 µM and gluconeogenesis even at 10 µM in both healthy and arthritic rat livers, but more sensitive in these latter. Resveratrol above 100 µM inhibited ADP-stimulated respiration and the activities of NADH- and succinate-oxidases in mitochondria, which were partially responsible for gluconeogenesis inhibition. Pyruvate carboxylase activity was inhibited by 25 µM resveratrol and should inhibit gluconeogenesis already at low concentrations. Resveratrol was significantly metabolized to R3G in healthy rat livers, however, R3G formation was lower in arthritic rat livers. The latter must be in part a consequence of a lower glucose disposal for glucuronidation. When compared to resveratrol, R3G inhibited gluconeogenesis in a lower extension and glycogen catabolism in a higher extension. SIGNIFICANCE: the effects of resveratrol and R3G tended to be transitory and existed only when the resveratrol is present in the organ, however, they should be considered because significant serum concentrations of both are found after oral ingestion of resveratrol.


Assuntos
Gluconeogênese , Fígado , Ratos , Animais , Resveratrol/farmacologia , Resveratrol/metabolismo , Fígado/metabolismo , Glicogênio/metabolismo , Biotransformação
12.
Toxicol Lett ; 368: 56-65, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35963428

RESUMO

Berberine is a plant alkaloid to which antihyperglycemic properties have been attributed. It is also known as an inhibitor of mitochondrial functions. In this work short-term translation of the latter effects on hepatic metabolism were investigated using the isolated perfused rat liver. Once-through perfusion with a buffered saline solution was done. At low portal concentrations berberine modified several metabolic pathways. It inhibited hepatic gluconeogenesis, increased glycolysis, inhibited ammonia detoxification, increased the cytosolic NADH/NAD+ ratio and diminished the ATP levels. Respiration of intact mitochondria was impaired as well as the mitochondrial pyruvate carboxylation activity. These results can be regarded as evidence that the direct inhibitory effects of berberine on gluconeogenesis, mediated by both energy metabolism and pyruvate carboxylation inhibition, represent most likely a significant contribution to its clinical efficacy as an antihyperglycemic agent. However, safety concerns also arise because all effects occur at similar concentrations and there is a narrow margin between the expected benefits and toxicity. Even mild inhibition of gluconeogenesis is accompanied by diminutions in oxygen uptake and ammonia detoxification and increases in the NADH/NAD+ ratio. All combined, desired and undesired effects could well in the end represent a deleterious combination of events leading to disruption of cellular homeostasis.


Assuntos
Berberina , Amônia/metabolismo , Animais , Berberina/toxicidade , Gluconeogênese , Hipoglicemiantes/farmacologia , Fígado , Mitocôndrias Hepáticas , NAD/metabolismo , Perfusão , Ácido Pirúvico/metabolismo , Ratos
13.
Avicenna J Phytomed ; 12(4): 388-400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782770

RESUMO

Objective: In the present study, the hepatoprotective effects of ß-myrcene (MYR) on acetaminophen-induced hepatotoxicity were investigated. Materials and Methods: A total of 40 Balb/c mice were randomly divided into five groups as follows: 1) Normal control group which received only carboxymethylcellulose (CMC), the vehicle used to dissolve acetaminophen (N-acetyl-p-aminophenol, APAP, paracetamol) and MYR; 2) APAP group which received a single dose of acetaminophen (250 mg/kg) orally on day 7; 3) Silymarin group which received 200 mg/kg/day of silymarin; and 4 and 5) pretreatment groups in which, mice were treated with 100 or 200 mg/kg/day of MYR. Liver and blood samples were collected to analyze serum aminotransferases, inflammatory response, oxidative stress markers, and histopathological insults. Results: Our results showed that MYR pretreatment attenuated liver damage and restored liver cells function and integrity as it decreased the leakage of serum aminotransferases (alanine and aspartate aminotransferases (ALT and AST, respectively)) into the blood (p<0.01). MYR treatment also reduced levels of myeloperoxidase (MPO) activity and nitric oxide (NO) (p<0.001). In addition, MYR pretreatment demonstrated significant antioxidant activity by decreasing malondialdehyde (MDA), reactive oxygen species (ROS), and reduced glutathione (GSH) levels (p<0.001). Furthermore, it restored the hepatic level of superoxide dismutase (SOD), catalase (CAT), and oxidized glutathione (GSSG) (p<0.001). Conclusion: For the first time, our results showed that MYR treatment significantly improved liver function by reducing oxidative stress and the inflammatory response induced by APAP.

14.
J Tradit Complement Med ; 12(4): 414-425, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35747358

RESUMO

Background and aim: The present study investigated the effects of orally administered α-tocopherol-loaded polycaprolactone nanoparticles on the articular inflammation and systemic oxidative status of middle-aged Holtzman rats with Freund's adjuvant-induced polyarthritis, a model for rheumatoid arthritis. Intraperitoneally administered free α-tocopherol provided the reference for comparison. Experimental procedure: Two protocols of treatment were followed: intraperitoneal administration of free α-tocopherol (100 mg/kg i.p.) or oral administration of free and nanoencapsulated α-tocopherol (100 mg/kg p.o.). Animals were treated during 18 days after arthritis induction. Results: Free (i.p.) and encapsulated α-tocopherol decreased the hind paws edema, the leukocytes infiltration into femorotibial joints and the mRNA expression of pro-inflammatory cytokines in the tibial anterior muscle of arthritic rats, but the encapsulated compound was more effective. Free (i.p.) and encapsulated α-tocopherol decreased the high levels of reactive oxygen species in the brain and liver, but only the encapsulated compound decreased the levels of protein carbonyl groups in these organs. Both free (i.p.) and encapsulated α-tocopherol increased the α-tocopherol levels and the ratio of reduced to oxidized glutathione in these organs. Conclusion: Both intraperitoneally administered free α-tocopherol and orally administered encapsulated α-tocopherol effectively improved inflammation and systemic oxidative stress in middle-aged arthritic rats. However, the encapsulated form should be preferred because the oral administration route does not be linked to the evident discomfort that is caused in general by injectable medicaments. Consequently, α-tocopherol-loaded polycaprolactone nanoparticles may be a promising adjuvant to the most current approaches aiming at rheumatoid arthritis therapy.

15.
Toxicol Appl Pharmacol ; 442: 115987, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35307377

RESUMO

Triclosan (5-chloro-2'-[2,4-dichlorophenoxi]-phenol) is a polychlorinated biphenolic antimicrobial, utilized as antiseptic and preservative in hygiene products and medical equipment. Triclosan causes mitochondrial dysfunction (uncoupling, inhibition of electron flow), as demonstrated in isolated rat liver mitochondria. These actions in the mitochondria could compromise energy-dependent metabolic fluxes in the liver. For this reason, the present work aimed at investigating how these effects on isolated mitochondria translate to the whole and intact hepatocyte. For accomplishing this, the isolated perfused rat liver was utilized, a system that preserves both microcirculation and the cell-to-cell interactions. In addition, the single-pass triclosan hepatic transformation was also evaluated by HPLC as well as the direct action of triclosan on gluconeogenic enzymes. The results revealed that triclosan decreased anabolic processes (e.g., gluconeogenesis) and increased catabolic processes (e.g., glycolysis, ammonia output) in the liver, generally with a complex pattern of concentration dependences. Unlike the effects on isolated mitochondria, which occur in the micromolar range, the effects on intact liver required the 10-5 to 10-4 M range. The most probable cause for this behavior is the very high single-pass transformation of triclosan, which was superior to 95% at the portal concentration of 100 µM. The concentration gradient along the sinusoidal bed is, thus, very pronounced and the response of the liver reflects mainly that of the periportal cells. The high rates of hepatic biotransformation may be a probable explanation for the low acute toxicity of triclosan upon oral ingestion.


Assuntos
Triclosan , Animais , Metabolismo Energético , Gluconeogênese , Fígado , Mitocôndrias Hepáticas , Ratos , Triclosan/toxicidade
16.
J Appl Biomed ; 19(4): 210-219, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34907740

RESUMO

This study investigated whether a 30-day co-treatment with 1 g/kg glutamine dipeptide (GdiP) and 1 U/kg regular (rapid acting) or 5 U/kg degludec (long acting) insulins modifies glucose homeostasis and liver metabolism of alloxan-induced type 1 diabetic (T1D) male Swiss mice undergoing insulin-induced hypoglycemia (IIH). Glycemic curves were measured in fasted mice after IIH with 1 U/kg regular insulin. One hour after IIH, the lipid profile and AST and ALT activities were assayed in the serum. Morphometric analysis was assessed in the liver sections stained with hematoxylin-eosin and glycolysis, glycogenolysis, gluconeogenesis and ureagenesis were evaluated in perfused livers. T1D mice receiving GdiP or the insulins had a smaller blood glucose drop at 60 minutes after IIH, which was not sustained during the subsequent period up to 300 minutes. The 30-day treatment of T1D mice with insulin degludec, but not with regular insulin, improved fasting glycemia, body weight gain and serum activity of AST and ALT. Treatments with insulin degludec, GdiP and insulin degludec + GdiP decreased the liver capacity in synthesizing glucose from alanine. GdiP, in combination with both insulins, was associated with increases in the serum triglycerides and, in addition, regular insulin and GdiP increased AST and ALT activities, which could be the consequence of hepatic glycogen overload. GdiP and the insulins improved the IIH, although to a small extent. Caution is recommended, however, with respect to the use of GdiP because of its increasing effects on serum triglycerides and AST plus ALT activities.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Dipeptídeos , Glutamina , Hipoglicemia , Insulina de Ação Prolongada , Insulinas , Animais , Glicemia/análise , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Dipeptídeos/efeitos adversos , Glucose/metabolismo , Glutamina/farmacologia , Homeostase , Hipoglicemia/induzido quimicamente , Insulina/efeitos adversos , Insulina de Ação Prolongada/farmacologia , Fígado/química , Fígado/metabolismo , Masculino , Camundongos , Triglicerídeos/efeitos adversos
17.
Food Funct ; 12(20): 9820-9828, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34664586

RESUMO

The objective of this work was to determine the potential bioactive properties of extracts from bio-residues of pinhão (Araucaria angustifolia (Bertol.) Kuntze) seeds, namely the α-amylase and cholinesterase inhibition, cytotoxicity, and anti-inflammatory properties. The pinhão extracts evaluated were obtained from cooking water (CW) and as an ethanolic extract from residual pinhão seed shells (PS). Catechin was the major compound found in both extracts. The PS extract presented higher antioxidant levels and the better inhibition of human salivary and porcine pancreatic α-amylases when compared to the CW extract. Also, based on in vivo evaluations, the PS extract did not differ significantly from acarbose when compared to a control group. The most potent inhibitor of cholinesterases was the CW extract. No cytotoxicity toward normal cells was detected, and neither extract showed anti-inflammatory activity. The PS extract presented cytotoxic activity toward non-small-cell lung, cervical, hepatocellular and breast carcinoma cell lines. Overall, the results demonstrated the potential bioactivity of extracts obtained from pinhão bio-residues.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Araucaria/química , Inibidores da Colinesterase/farmacologia , Extratos Vegetais/farmacologia , alfa-Amilases/antagonistas & inibidores , Animais , Antioxidantes/farmacologia , Catequina/análise , Linhagem Celular Tumoral , Colinesterases/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Extratos Vegetais/análise , Sementes/química , alfa-Amilases/metabolismo
18.
Life Sci ; 284: 119910, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453939

RESUMO

AIMS: Quercetin has been investigated as an agent to treat rheumatoid arthritis. At high doses it improves inflammation and the antioxidant status of arthritic rats, but it also exerts mitochondriotoxic and pro-oxidant activities. Beneficial effects of quercetin have not been found at low doses because of its chemical instability and low bioavailability. In the hope of overcoming these problems this study investigated the effects of long-term administration of quercetin-loaded pectin/casein microparticles on the oxidative status of liver and brain of rats with adjuvant-induced arthritis. MAIN METHODS: Particle morphology was viewed with transmission electron microscopy and the encapsulation efficiency was measured indirectly by X-ray diffraction. Quercetin microcapsules (10 mg/Kg) were orally administered to rats during 60 days. Inflammation indicators and oxidative stress markers were measured in addition to the respiratory activity and ROS production in isolated mitochondria. KEY FINDINGS: Quercetin was efficiently encapsulated inside the polymeric matrix, forming a solid amorphous solution. The administration of quercetin microparticles to arthritic rats almost normalized protein carbonylation, lipid peroxidation, the levels of reactive oxygen species as well as the reduced glutathione content in both liver and brain. The paw edema in arthritic rats was not responsive, but the plasmatic activity of ALT and the mitochondrial respiration were not affected by quercetin, indicating absence of mitochondriotoxic or hepatotoxic actions. SIGNIFICANCE: Quercetin-loaded pectin/casein microcapsules orally administered at a low dose improve oxidative stress of arthritic rats without a strong anti-inflammatory activity. This supports the long-term use of quercetin as an antioxidant agent to treat rheumatoid arthritis.


Assuntos
Artrite Experimental/patologia , Caseínas/química , Microesferas , Estresse Oxidativo , Pectinas/química , Quercetina/farmacologia , Alanina Transaminase/sangue , Animais , Antioxidantes/farmacologia , Artrite Experimental/sangue , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Varredura Diferencial de Calorimetria , Respiração Celular/efeitos dos fármacos , Edema/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
19.
Food Funct ; 12(6): 2644-2659, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33645616

RESUMO

The purpose of this study was to perform a parallel and comparative investigation of the effects of a Myrciaria jaboticaba (common name jabuticaba) peel extract and of its constituent cyanidin-3-O-glucoside on the overall process of starch and triglyceride intestinal absorption. The peel extract inhibited both the porcine pancreactic α-amylase and the pancreatic lipase but was 13.6 times more potent on the latter (IC50 values of 1963 and 143.9 µg mL-1, respectively). Cyanidin-3-O-glucoside did not contribute significantly to these inhibitions. The jabuticaba peel extract inhibited starch absorption in mice at doses that were compatible with its inhibitory action on the α-amylase. No inhibition of starch absorption was found with cyanidin-3-O-glucoside doses compatible with its content in the extract. The extract also inhibited triglyceride absorption, but at doses that were considerably smaller than those predicted by its strength in inhibiting the pancreatic lipase (ID50 = 3.65 mg kg-1). In this case, cyanidin-3-O-glucoside was also strongly inhibitory, with 72% inhibition at the dose of 2 mg kg-1. When oleate + glycerol were given to mice, both the peel extract and cyanidin-3-O-glucoside strongly inhibited the appearance of triglycerides in the plasma. The main mechanism seems, thus, not to be the lipase inhibition but rather the inhibition of one or more steps (e.g., transport) in the events that lead to the transformation of free fatty acids in the intestinal tract into triglycerides. Due to the low active doses, the jabuticaba peel extract presents many favourable perspectives as an inhibitor of fat absorption and cyanidin-3-O-glucoside seems to play a decisive role.


Assuntos
Antocianinas/farmacologia , Myrtaceae/química , Extratos Vegetais/farmacologia , Amido/metabolismo , Triglicerídeos/metabolismo , Animais , Antocianinas/química , Frutas/química , Inibidores de Glicosídeo Hidrolases , Lipase/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Extratos Vegetais/química , Amido/química , Suínos , Triglicerídeos/sangue , Triglicerídeos/química
20.
Basic Clin Pharmacol Toxicol ; 128(1): 80-90, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32772505

RESUMO

The actions of resveratrol in brain and plasma of rats with adjuvant-induced arthritis were investigated. Resveratrol was administered orally during a period of 23 days. A major concern of the present work was to explore an ample range of daily doses (10-200 mg/kg). Several oxidative and inflammatory markers were measured. Important effects of resveratrol treatment were the normalization of the plasma myeloperoxidase activity (inflammatory marker), the normalization of the brain xanthine oxidase activity (reactive oxygen species source) and the near-normalization of the catalase activity in the brain (antioxidant defence). These effects presented obvious dose dependencies in the range up to 200 mg/kg. Resveratrol also reduced protein and lipid damage within the lowest dose ranges investigated, and its action as a free radical scavenger activity was enhanced in brain mitochondria of arthritic rats. Resveratrol failed in restoring the diminished albumin levels and plasma protein thiols in arthritic rats. The latter, however, were substantially increased in healthy rats at low doses (up to 50 mg/kg), a sign of antioxidant action. This increase was reversed at higher doses, a sign of pro-oxidant action. The observations agree with the notion that low doses of resveratrol might be useful as an adjuvant to the conventional antirheumatic drugs.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Artrite Experimental/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Mediadores da Inflamação/sangue , Estresse Oxidativo/efeitos dos fármacos , Resveratrol/administração & dosagem , Animais , Artrite Experimental/sangue , Biomarcadores/sangue , Encéfalo/metabolismo , Catalase/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peroxidase/sangue , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Xantina Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...